import pandas as pd
import numpy as np
import sklearn
import pickle
import time
import datetime
import warnings
'ignore') warnings.filterwarnings(
imports
%run function_proposed_gcn.py
with open('fraudTrain.pkl', 'rb') as file:
= pickle.load(file) fraudTrain
= try_1(fraudTrain, 0.3, 0.005, 8.028000e+04, 0.3)
df_results = try_1(fraudTrain, 0.3, 0.005, 8.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 7.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 6.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 5.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 4.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 3.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 2.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 1.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 0.528000e+04, 0.3, prev_results=df_results)
df_results
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'./results/{ymdhms}-proposed.csv',index=False) df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.968531 | 0.126761 | 0.900000 | 0.222222 | 0.978308 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 80280.0 | 0.3 |
1 | GCN | None | 0.973859 | 0.149171 | 0.900000 | 0.255924 | 0.981900 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 85280.0 | 0.3 |
2 | GCN | None | 0.973693 | 0.148352 | 0.900000 | 0.254717 | 0.967682 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 75280.0 | 0.3 |
3 | GCN | None | 0.971195 | 0.140704 | 0.933333 | 0.244541 | 0.965412 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 65280.0 | 0.3 |
4 | GCN | None | 0.961871 | 0.103586 | 0.866667 | 0.185053 | 0.959438 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 55280.0 | 0.3 |
5 | GCN | None | 0.970363 | 0.130000 | 0.866667 | 0.226087 | 0.958300 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 45280.0 | 0.3 |
6 | GCN | None | 0.967699 | 0.116822 | 0.833333 | 0.204918 | 0.957937 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 35280.0 | 0.3 |
7 | GCN | None | 0.966034 | 0.111607 | 0.833333 | 0.196850 | 0.956956 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 25280.0 | 0.3 |
8 | GCN | None | 0.969697 | 0.127451 | 0.866667 | 0.222222 | 0.955840 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 15280.0 | 0.3 |
9 | GCN | None | 0.973859 | 0.145251 | 0.866667 | 0.248804 | 0.958517 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 5280.0 | 0.3 |
= try_1(fraudTrain, 0.3, 0.005, 8.028000e+04, 0.2)
df_results = try_1(fraudTrain, 0.3, 0.005, 8.528000e+04, 0.2, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 7.528000e+04, 0.2, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 6.528000e+04, 0.2, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 5.528000e+04, 0.2, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 4.528000e+04, 0.2, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 3.528000e+04, 0.2, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 2.528000e+04, 0.2, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 1.528000e+04, 0.2, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 0.528000e+04, 0.2, prev_results=df_results)
df_results
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'./results/{ymdhms}-proposed.csv',index=False) df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.969863 | 0.131707 | 0.900000 | 0.229787 | 0.979507 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 80280.0 | 0.2 |
1 | GCN | None | 0.973693 | 0.148352 | 0.900000 | 0.254717 | 0.980455 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 85280.0 | 0.2 |
2 | GCN | None | 0.972194 | 0.141361 | 0.900000 | 0.244344 | 0.980277 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 75280.0 | 0.2 |
3 | GCN | None | 0.974359 | 0.151685 | 0.900000 | 0.259615 | 0.979351 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 65280.0 | 0.2 |
4 | GCN | None | 0.973693 | 0.152174 | 0.933333 | 0.261682 | 0.981838 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 55280.0 | 0.2 |
5 | GCN | None | 0.971195 | 0.140704 | 0.933333 | 0.244541 | 0.965646 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 45280.0 | 0.2 |
6 | GCN | None | 0.973693 | 0.144444 | 0.866667 | 0.247619 | 0.957675 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 35280.0 | 0.2 |
7 | GCN | None | 0.967366 | 0.115741 | 0.833333 | 0.203252 | 0.957753 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 25280.0 | 0.2 |
8 | GCN | None | 0.972361 | 0.138298 | 0.866667 | 0.238532 | 0.957614 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 15280.0 | 0.2 |
9 | GCN | None | 0.971861 | 0.136126 | 0.866667 | 0.235294 | 0.958478 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 5280.0 | 0.2 |
= try_1(fraudTrain, 0.3, 0.005, 9.028000e+04, 0.3)
df_results = try_1(fraudTrain, 0.3, 0.005, 10.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 11.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 12.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 13.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 14.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 15.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 16.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 17.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 18.528000e+04, 0.3, prev_results=df_results)
df_results
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'./results/{ymdhms}-proposed.csv',index=False) df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.972527 | 0.142857 | 0.9 | 0.246575 | 0.980115 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 90280.0 | 0.3 |
1 | GCN | None | 0.972028 | 0.140625 | 0.9 | 0.243243 | 0.977622 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 105280.0 | 0.3 |
2 | GCN | None | 0.968698 | 0.127358 | 0.9 | 0.223140 | 0.978012 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 115280.0 | 0.3 |
3 | GCN | None | 0.968864 | 0.127962 | 0.9 | 0.224066 | 0.979016 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 125280.0 | 0.3 |
4 | GCN | None | 0.972694 | 0.143617 | 0.9 | 0.247706 | 0.987316 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 135280.0 | 0.3 |
5 | GCN | None | 0.973693 | 0.148352 | 0.9 | 0.254717 | 0.987143 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 145280.0 | 0.3 |
6 | GCN | None | 0.973193 | 0.145946 | 0.9 | 0.251163 | 0.987221 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 155280.0 | 0.3 |
7 | GCN | None | 0.969697 | 0.131068 | 0.9 | 0.228814 | 0.986998 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 165280.0 | 0.3 |
8 | GCN | None | 0.972194 | 0.141361 | 0.9 | 0.244344 | 0.986825 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 175280.0 | 0.3 |
9 | GCN | None | 0.966533 | 0.120000 | 0.9 | 0.211765 | 0.986747 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 185280.0 | 0.3 |
= try_1(fraudTrain, 0.3, 0.005, 8.028000e+04, 0.4)
df_results = try_1(fraudTrain, 0.3, 0.005, 8.528000e+04, 0.4, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 7.528000e+04, 0.4, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 6.528000e+04, 0.4, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 5.528000e+04, 0.4, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 4.528000e+04, 0.4, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 3.528000e+04, 0.4, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 2.528000e+04, 0.4, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 1.528000e+04, 0.4, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 0.528000e+04, 0.4, prev_results=df_results)
df_results
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'./results/{ymdhms}-proposed.csv',index=False) df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.965534 | 0.120172 | 0.933333 | 0.212928 | 0.960843 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 80280.0 | 0.4 |
1 | GCN | None | 0.964702 | 0.117647 | 0.933333 | 0.208955 | 0.965367 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 85280.0 | 0.4 |
2 | GCN | None | 0.962704 | 0.108871 | 0.900000 | 0.194245 | 0.962405 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 75280.0 | 0.4 |
3 | GCN | None | 0.966533 | 0.116592 | 0.866667 | 0.205534 | 0.958261 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 65280.0 | 0.4 |
4 | GCN | None | 0.967699 | 0.116822 | 0.833333 | 0.204918 | 0.957842 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 55280.0 | 0.4 |
5 | GCN | None | 0.963869 | 0.105485 | 0.833333 | 0.187266 | 0.957759 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 45280.0 | 0.4 |
6 | GCN | None | 0.966034 | 0.115044 | 0.866667 | 0.203125 | 0.957106 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 35280.0 | 0.4 |
7 | GCN | None | 0.971528 | 0.134715 | 0.866667 | 0.233184 | 0.955489 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 25280.0 | 0.4 |
8 | GCN | None | 0.972527 | 0.139037 | 0.866667 | 0.239631 | 0.956621 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 15280.0 | 0.4 |
9 | GCN | None | 0.971029 | 0.132653 | 0.866667 | 0.230088 | 0.957218 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 5280.0 | 0.4 |
= try_1(fraudTrain, 0.3, 0.005, 8.028000e+04, 0.5)
df_results = try_1(fraudTrain, 0.3, 0.005, 10.528000e+04, 0.5, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 11.528000e+04, 0.5, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 12.528000e+04, 0.5, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 13.528000e+04, 0.5, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 8.528000e+04, 0.5, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 7.528000e+04, 0.5, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 6.528000e+04, 0.5, prev_results=df_results)
df_results
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'./results/{ymdhms}-proposed.csv',index=False) df_results.to_csv(
df_results